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Received 25 November 1993 

Abstract. Using the wncept of a non-standad Hilben space over the quanhlm complex plane 
recently introduced by Kowalski er nl [I], we wnstruct a unitary q-analogue of the Weyl- 
displacement operator. We investigate the q-displaced vacuum states and show that they exhibit 
pmpenies ahalogous to coherent stales in the undefoped theory. ' They are, however, distinct 
from any q-coherent states previously found in the literature. 

Coherent state techniques have been among the standard tools of theoretical physics for many 
years and in that time they have undergone extensive development. Although originally 
proposed by Schrodinger [2] in 1926, their properties were really first investigated by 
Glauber [3-51 in the context of quantum optics. Subsequent work by such authors as 
Klauder [a, Solomon [7], Perelomov [8,9], Rasetti [lo, 111 and Gilmore [12] has extended 
their physical application as well as generalizing the concept to coherent states of arbitrary 
Lie groups. An extensive bibliography of such work is provided by Klauder and Skagerstam 

In one of his original papers [SI, Glauber gave three approaches to the coherent states 
of the conventional boson operators (i.e. the generators of the Heisenberg-Weyl algebra). 
Coherent states could be defined as: 

(i) states which minimize the field quadrature uncertainty product, i.e. minimum 
uncertainty states; 

(ii) states which are the normalized eigenstates of the lowering operator of the algebra, 
i.e. annihilation operator eigenstates; and 

( 5 )  states which are formed by the action of a unitary displacement operator on a lowest 
weight (vacuum) vector, i.e. displaced vacuum states. 

In the case of the Heisenberg-Weyl algebra, these three definitions are shown to be 
equivalent. However, if we allow the eigenvalues of the states to belong not to a field 
but to some other algebraic structure, care needs to be taken to distinguish between the 
different approaches. If we consider the annihilation operator eigenstates and the displaced 
vacuum states, we see that if the 'eigenvalue' of the eigenstate does not commute with 
the displacement operator, then in this extension of the theory we need to introduce the 
concepts of left and right eigenvalues. 

Recently there has been much interest in the subject of deformations of algebraic 
structures and quantum groups 1 14-16] in particular. This has led many authors to undertake 
an investigation of the properties of q-deformations of the ordinary boson algebra. The q- 
bosons studied fall naturally into two types (although there are links between them, see 
[17,181). One type, first discovered by Arik and Coon [19], uses the basic numbers of 
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classical q-analysis and can be termed maths-type q-bosons. The states associated with these 
are related to the extensive mathematics literature of q-special functions [20,21], which is 
an additional reason for our use of this term. The second type proposed by Macfarlane 
[22] and Biedenharn [23] in connection with the representation theory of quantum groups 
and arousing much interest in the physics literature can be termed physics-type q-bosons. 
The coherent states of both types of q-boson have been extensively studied [24-26]. Most 
authors have tried to find coherent states for the q-boson algebra in terms of normalized 
eigenstates of the deformed annihilation operator. While much work has been done, it has 
not proved possible to give a displacement operator which produces such a state from the 
vacuum vector, although Jannussis I271 and, more recently, Zhedanov [ZS] (in the context 
of his (U. u)-algebras) have proposed operators which have some of the properties required. 
Unfortunately, the relation between states produced from these operators and the normalized 
eigenstates of the deformed annihilation operator remains problematic. 

In almost all cases the base field has been assumed to be the complex plane (although 
quantum plane variables have been considered by Fairlie and others in [29-311). In a recent 
paper, however, Kowalski and Rembielinski [l] introduced a new generalization of the 
conventional theory applicable to the maths-type q-bosons. Instead of using C as the base 
field, they use a deformation of the complex plane, Cq [32,33]. Formally Cq is the algebra 
C[z, e*]/BQ, i.e. the quotient of the involutive algebra freely generated by z and z*. and 
Bq, the bi-ideal determined by the re-ordering rule 
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zz* = qz*z (1) 

where q is a non-zero real parameter. 
Cq is also a left UQ(2)-module where Uq(2) is the two-dimensional unitary matrix 

quantum group of Manin [U] and Woronowicz 1161. 
Kowalski and Rembielinski showed that, analogously to conventional quantum 

mechanics where the Hilbert space of states of the oscillator is a left C-module, it is possible 
to define the Hilbert space of states of the q-deformed oscillator as a left Cq-module. This 
allows an extension of the concept of conventional coherent states (over C) to states over 

In this paper, we propose an analogue of the unitary displacement operator of 
conventional coherent state theory. Working within the framework outlined in [I], we 
define displaced vacuum states and show that these are analogues of the eigenstates of 
the deformed annihilation operator. Such states are related to those given by Kowalski 
and Rembielinski by a similarity transformation. Moreover, it is easy to show that the 
displaced vacuum states have the same quantum noise dispersion value as the undisplaced 
vacuum state (given conventional definitions of the field quadratures in terms of creation 
and annihilation operators). This should be contrasted with the states given in [l]. 

c'l. 

We consider the q-oscillator specified by 

aa+ -qat, = I (2) 

together with the algebra Cq with generators z and z* (= z t )  which are assumed to commute 
with a and at. 

We use the Jackson q-exponential function [34] 
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where [n] = (1 - q") / ( l  - q )  is the basic number of q-analysis [21]. 
It is known [35] that 

where [ X ,  Y]o  = Y and 

and from this it is straightforward to show that 

E,(zat)z*aE,-i (-zat) = z*a - Z*Z (6) 

which implies 

Es(zat)E,(z*a)Eq-l(-zat) = Eq(z*a - z'z). 

Using the results r35.211 

Eq(X)E,-)(-X) 1 

and [36,37] 

E,(X)E,(Y) = E,(X + Y )  if Y X  = q X Y  (9) 

Eq(zat)Eq (z*a) = E, (z*a)~,(-z*z)~,  (zat). 

E,.' (z"a)E,-~(zat) = E,-,(zat)E,-,(z*z)Eq-l (z*a). 

we obtain the following analogue of the conventional reordering property 

(10) 

Taking the inverse of (IO) and letting z -+ -2, I* -+ -z*, we obtain 

(11) 

Equations (IO) and (11) allow us to reorder products of q-exponentials (see [28] and 

Consider the operator U(z, z*) defined by 
[30] for other examples of this procedure). 

~ ( z ,  z') = ~q( -z*z ) "z~q(za t )~q- t  (-z*a). (12) 

The Hermitian 'conjugate of this is 

V(Z, z*)i = E,.' (-Z~')E,(Z*~)E~(-~*~)''~. 

Using (IO) and ( l l ) ,  it can be shown that LT is a unitary operator i.e. that 

U(z, Z")+ = U(z, z*)-'. (14) 

Furthermore, in the limit q + 1, U ( z , z * )  + D(z) ,  where D ( z )  is the Weyl- 
displacement operator of conventional coherent state theory. 

D(Z) = exp(-4lzl2) exp(zat) exp(-z*a) = exp(zat - z*a). (15) 



2040 R J M c D e m t t  and A I Solomon 

TO show that U(z ,  z') is a q-deformed displacement operator, we make use of the 
following result: 

a(at)" - q"(a+)"a = [n],(at)"-' (16) 

which, since [nIq-l = ql-"[n],, leads to the formula 

Eq-r(-zat)u - aE,-t (-zq-'at) = zq-'Eq-r(-zat). (17) 

Now consider the operator product U(z ,  z*)taU(z, z") 

U ( z ,  z*)taU(z,  z') = Eq-l (-zat)Eg(z*a)E,(-z*z)'/2aEq(-z*z)'12E,(zat)Eg-i (-z*a) 
(18) 

= {aE,-l (-zq-'a+) + zq-'E,-i (-zat)JE,(z*a)E,(-z*z)Eq(zat)Eq-i (-z'a) 

= aE,-~(-zq-'at)Eq(zat) + zq-' 

= aE,(zat)Eq(zq-'at)-' +zq-'. (19) 

From the definition of the derivative of the q-exponential, it can be seen that 

Eq(zatWq(zq -' a t ) -' = 1 + (4 - l)q-'za t (20) 

so 

U ( Z ,  z*)+aU(z, z*) = a { l +  (q - l)q-'zatJ + zq-'. 

U(z,z*)taU(z,z*) =a+zq N . 

(21) 

Using aut = [N + 11, which follows from ( Z ) ,  we obtain the result 

(22) 

We therefore have an analogue of the conventional (q = 1) formula 

~ ~ z ~ ~ a ~ ~ z ) = a + z ~ n , a ~ ~ = a + z ~  (24) 

with D(z )  defined as in (15). 
Because of the unitarity of U ( z ,  z*), the transformation 

a + a' = u(z ,z*) tuU(z,z*)  

is a non-trivial automorphism of the q-boson algebra (2). 
If we now define a set of displaced vacuum states by 

Iz, z") = U ( z ,  Z")lO) 

then by virtue of the unitarity of U and (22), 

aU(z,z*)  = ~ ( z ,  z*){a +zqNI .  
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Therefore 

i.e. Iz, z*) is a right 'eigenstate' of a with right 'eigenvalue' z, 

alz, z*) = Iz, z*)z. (31) 

In the q -+ 1 limit where z, z* commute and a, at are just the usual bosonic operators, 
this becomes the familiar statement that displaced vacuum states are eigenstates of the 
annihilation operator. 

alz) =zlz). ( 3 2  

Since Iz, 2") = U(z, z")IO), we can express these states in terms of the usual q-boson 
number sta& In). 

so 

(n1z.z') = Eq(-z*z)'"- ZR 

W' 
In [l], Kowalski and Rembielinski defined another set of normalized states Iz, z*) by 

Iz, z") = Eq(za t)Eq(-z*Z)lO) (37) 

which have the property that [z, z*) are eigenstates of the annihilation operator with left 
eigenvalue z, 

alz, z") = zlz, e"). (38) 

These eigenstates of the annihilation operator are related to the displaced vacuum states 
Iz, z') by the similarity transformation 

lz, z") = E,-I(Z"Z)'/~lZ, z*)Eq(-z*Z)"Z. (39) 

This illustrates that if q # 1, the two conventional definitions of coherent states as either 
eigenstates of the annihilation operator or displaced vacuum states are not equivalent for 
the type of q-deformed system constructed here. 
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To consider the quantum noise dispersion value in the displaced vacuum states, we use 
the (deformed) field components x and p defined by 

The deformed commutation relation for a and at leads to the following dispersion 
relation 

(Ax)z(APP)z = (AX)O(AP)O = i (41) 

where (A): and (A): are the quadrature variances in the displaced and undisplaced vacuum 
states respectively. 

Therefore, just as in the conventional case [5], both the undisplaced and displaced 
vacuum states have the same value for the quantum noise dispersion. 

It is interesting to note that we can define another unitary operator V(z ,  z') by 

V ( z ,  z") = V(-z ,  -z*1+ (42) 

which leads to the altemative shift automorphism 

a' = ~ ( z ,  z*)aV(z, z*)+ 
N = a - z q  . 

(43) 
(44) 

This can be used to define states which are eigenstates of a new deformed annihilation 

(45) 

We conclude by making a few remarks concerning possible extensions of the theory of 
coherent states over non-commuting algebras rather than fields. It is known that a consistent 
extension of the theory of q-coherent states to q-squeezed states has not yet been successful. 
However, it has been pointed out by one of the authors [38] that the formalism discussed 
here might be an appropriate vehicle for developing the theory. In conventional quantum 
optics (i.e. with undefonned creation and annihilation operators A and At) ,  it is known that 
it is possible to define a squeezed state 16, A) as a normalized state for which 

(46) 

operator b, with left eigenvalue z ,  where b obeys the boson equation 

bbt - q-'btb = q-2N. 

( A  + 5At)15. A) = A15, A) 

which gives 

It, A) = N-' exp(-it(At)') exp(AAt)lO) (47) 

where N is the normalization constant. 
In [381 it was shown that for maths-type q-bosons, if we define a state 15, A) by 

(a + 6at)B. A) = AI$, A) (49) 

This suggests that a generalization of Cq might be appropriate as the base algebra for 
provided A 5  = q'eh. 

constructing both q-squeezed states and a q-analogue of the unitary squeezing operator. 
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